Highlighted Papers

Light leaves and Lusztig’s conjecture

Advances in Mathematics (2015) 772-807. I prove that Lusztig's conjecture reduces to a problem about the light leaves (as defined in my first paper). Using the result in Section 4.3 of this paper (that he discovered independently) Geordie Williamson disproved Lusztig's conjecture! The counterexamples grow exponentially in the Coxeter number. Here is Geordie's paper  

Comments Off on Light leaves and Lusztig’s conjecture

Primer Congreso Internacional Aproximaciones Experimentales a la Interacción Social, 14-16 January 2015, Valparaíso, Chile.

Primer Congreso Internacional Aproximaciones Experimentales a la Interacción Social, 14-16 January 2015, Valparaíso, Chile. Congreso Internacional, Aproximaciones Experimentales a la Interacción…

Comments Off on Primer Congreso Internacional Aproximaciones Experimentales a la Interacción Social, 14-16 January 2015, Valparaíso, Chile.

Standard objects in 2-braid groups

Joint with Geordie WilliamsonProc. London. Math. Soc. 109 (2014), no. 5, 1264-1280. For any Coxeter system, we establish the existence of analogues of standard and costandard objects in 2-braid groups, thus proving a conjecture that Rouquier stated in the ICM 2006. This result was a key step for the proof by Elias and Williamson of Kazhdan-Lusztig conjectures

Comments Off on Standard objects in 2-braid groups

New bases of some Hecke algebras via Soergel bimodules 

New bases of some Hecke algebras via Soergel bimodules Advances in Math. 228 (2011) 1043-1067. This is a first attempt to find explicitly Soergel indecomposable bimodules for extra-large Coxeter systems. This is very linked with my "Forking path conjecture" (see the paper "Gentle Introduction to Soergel bimodules" above), an extremely strange phenomenon that I would love to understand better.

Comments Off on New bases of some Hecke algebras via Soergel bimodules 

My Ph.D thesis

Chapter 1 is essentially a version of the paper that one could call "Soergel bimodules explained by Soergel" with explanations of the obscure points. Sections 2.4 and 2.5 are original and are not included in any other paper. I give a different (and easier) proof of the fact that Rouquier complexes satisfy the braid relations.

Comments Off on My Ph.D thesis
  • 1
  • 2
Close Menu
Back